Ich bin verwirrt, und wenn du 8 Minuten Zeit und ein bisschen mathematischen Sachverstand mitbringst (allerdings nicht zu viel), dann kannst du das auch gleich sein. Es geht um Folgendes:
Die Geschichte des jungen Schülers Carl Friedrich Gauß ist ziemlich bekannt, überliefert wurde sie uns von Wolfgang Sartorius von Waltershausen:
„Der junge Gauss war kaum in die Rechenclasse eingetreten, als Büttner die Summation einer arithmetischen Reihe aufgab. Die Aufgabe war indess kaum ausgesprochen als Gauss die Tafel mit den im niedern Braunschweiger Dialekt gesprochenen Worten auf den Tisch wirft: »Ligget se’.« (Da liegt sie.)“ Die genaue Aufgabenstellung ist nicht überliefert. Oft wird berichtet, dass Büttner die Schüler die Zahlen von 1 bis 100 (nach anderen Quellen von 1 bis 60) addieren ließ und Gauß feststellte, dass die erste und die letzte Zahl (1+100), die zweite und die vorletzte Zahl (2+99) usw. zusammen immer 101 ergeben. Der Wert der gesuchten Summe ergibt sich so zu 101 mal 50.
Entsprechend den damaligen Verhältnissen unterrichtete Büttner etwa 100 Schüler in einer Klasse. Damals waren auch Züchtigungen mit der sogenannten Karwatsche (Lederpeitsche) üblich. Sartorius berichtet: „Am Ende der Stunde wurden darauf die Rechentafeln umgekehrt; die von Gauss mit einer einzigen Zahl lag oben und als Büttner das Exempel prüfte, wurde das seinige zum Staunen aller Anwesenden als richtig befunden, während viele der übrigen falsch waren und alsbald mit der Karwatsche rectificirt wurden.“ Büttner erkannte bald, dass Gauß in seiner Klasse nichts mehr lernen konnte.
Das Zitat stammt aus dem Wikipedia-Artikel zur Gaußschen Summenformel, denn genau darum geht es:
$$ \sum\limits_{n=1}^k n = \frac{k(k+1)}{2}$$
Ganz offensichtlich ist das Ergebnis dieser Summe selbst wieder eine natürliche Zahl und dadurch auch positiv. Irgendwie intuitiv. Bis hierher ist meine Welt in Ordnung.
Spannend wird es, wenn wir die Summe jetzt nicht mehr nur bis k laufen lassen, sondern bis unendlich. Mathematiker behaupten folgendes:
$$\sum\limits_{n=1}^\infty n = -\frac{1}{12}$$
Weiterlesen